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When a droplet of liquid 1 falls through liquid 2 to eventually hit the liquid 2–
liquid 1 interface, its initial impact on the interface can produce daughter droplets
of liquid 1. In some cases, a partial coalescence cascade governed by self-similar
capillary-inertial dynamics is observed, where the fall of the secondary droplets in
turn continues to produce further daughter droplets. Results show that inertia and
interfacial surface tension forces largely govern the process of partial coalescence.
The partial coalescence is suppressed by the viscous force when Ohnesorge number is
below a critical value and also by gravity force when Bond number exceeds a critical
value. Generation of secondary drop is observed for systems of lower Ohnesorge
number for liquid 1, lower and intermediate Ohnesorge number for liquid 2 and for
low and intermediate values of Bond number. Whenever the horizontal momentum
in the liquid column is more than the vertical momentum, secondary drop is formed.
A transition regime from partial to complete coalescence is obtained when the neck
radius oscillates twice. In this regime, the main body of the column can be fitted to
power-law scaling model within a specific time range. We investigated the conditions
and the outcome of these coalescence events based on numerical simulations using a
coupled level set and volume of fluid method (CLSVOF).

1. Introduction
Various studies have been conducted on the impact of droplets with fluid–

fluid interfaces. The behaviours of these impacts can be categorized into the
following regimes: splashing (Rein 1996; Morton, Rudman & Liow 2000; Liow
2001; Fedorchenko & Wang 2004), bouncing (Jayaratne & Mason 1964; Ching,
Golay & Johnson 1984) and coalescence (Marucci 1969; Cai 1989). Rein (1996)
studied the boundaries between splashing and coalescence based on the Weber
number, We = ρU 2R/σ , and Froude number, Fr =U 2/gR, of the impacting drops,
where ρ is the density, U is the velocity of the drop, R is the drop radius, σ is the
interfacial surface tension and g is the gravity. This seminal work showed that as
the impact velocity of the drop increases, the Weber number and the Froude number
increase simultaneously and the coalescence regime shifts towards the splashing
regime. Further investigations showed that in the low-velocity regime sometimes the
droplet does not coalesce entirely with the underlying liquid layer but a new droplet is
pinched off at its top. This phenomenon is called partial coalescence and it produces
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secondary drops of smaller radius. Partial coalescence is a component of a myriad of
complex phenomena such as the droplets in clouds (Berry & Reinhardt 1974), ocean
mist and airborne salt particles (Raes et al. 2000), emulsions (Bhakta & Ruckenstein
1997) and the generation of vortices near an interface (Thompson & Newall 1885;
Sarpkaya 1996). Many exciting studies involving drop/drop coalescence are also
available in literature (Menchaca-Rocha et al. 2001; Thoroddsen, Takehara & Etoh
2005). In a recent paper, Zhang, Li & Thoroddsen (2009) has experimentally shown
the formation of satellite drop during coalescence of two drops similar to the partial
coalescence phenomena in the case of drop impact on interface.

The partial coalescence of droplets on a flat air–liquid interface has revealed
spectacular features. Schotland (1960) observed that partial coalescence required a
low impact velocity of the drop on the interface. Experimental work by Thoroddsen &
Takehara (2000) and the numerical model of Pikhitsa & Tsargorodskaya (2000)
suggested that the existence of a monolayer surfactant film is crucial for multistage
coalescence of a droplet on an air–liquid interface which causes a hole in the
intervening air film between the droplet and the underlying liquid. Later, many
experimental studies have shown that multistage coalescence can occur even without
the presence of surfactants. For fluids of low viscosity, Honey & Kavehpour (2006)
identified a narrow intermediate range of drop diameters for which the viscous and
gravity forces are both negligible. They had observed up to six secondary drops
in which the drop size is reduced by the same fraction in each cycle of partial
coalescence and concluded that cascade formation stops due to viscous effects in
the case of smaller drops. Honey & Kavehpour (2006) reported the phenomenon
of the coalescence-induced bouncing of droplets at gas–liquid interfaces during the
coalescence cascade of liquid drops, which they suggested was due to capillary force
at the pinch-off.

The first successful experimental work on partial coalescence of liquid drops
at liquid–liquid interfaces was published by Charles & Mason (1960a ,b). They
concluded that the diameter ratio of the secondary to primary droplets varied with the
viscosity ratio µ∗ =µ1/µ2, and passed through a maximum near µ∗ = 1. According
to this study, partial coalescence occurred when 0.02 < µ∗ < 11. Contradicting this
result, Thoroddsen & Takehara (2000) observed partial coalescence for water and
ethanol drops in air with µ∗ ∼ 100. Charles & Mason (1960b) and Mohamed-
Kassim & Longmire (2003, 2004) described the partial coalescence process as
the propagation and focusing of capillary waves followed by Rayleigh instability.
Aryafar & Kavehpour (2006) in their experimental work focused on the time scales
of the partial coalescence. Chen, Mandre & Feng (2006a ,b) performed experiments on
low-viscosity Newtonian fluids and on polymeric liquids. Their experimental results
indicated that for partial coalescence to occur, the drop size has to be in a specific
range. Within this range they further defined three regimes: gravity regime, inertio-
capillary regime and the viscous regime of partial coalescence. Blanchette & Bigioni
(2006) argued both experimentally and numerically that partial coalescence was due
to the wave convergence on the top of the droplet and was not due to Rayleigh–
Plateau instability. In recent experimental work, Gilet et al. (2007a) has investigated
the ratio between the daughter and the mother droplets and the role of capillary
waves on partial coalescence criteria.

After the numerical work of Blanchette & Bigioni (2006), a computational study of
partial coalescence between a drop and the interface was performed by Yue, Zhou &
Feng (2006). They described the numerical simulations of partial coalescence based
on a phase-field method. Through parametric study, they established a criterion for
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partial coalescence in terms of a maximum Ohnesorge number which applies to a
wide range of fluid densities and viscosities provided that the Bond number is small.
Their simulations were limited to low Bo values and also the small-scale events such
as pinch-off took place more rapidly than in reality due to numerical diffusion. Very
recently, Blanchette & Bigioni (2009) conducted numerical and experimental studies
on partial coalescence. The surface tension effect was calculated using an axisymmetric
version of the front tracking algorithm of Popinet & Zaleski (1999). They considered
both gas and liquid as the surrounding fluid. They observed partial coalescence for
systems of low viscosity where capillary waves remain sufficiently vigorous to distort
the drop significantly. They also studied the coalescence of two drops of different sizes.
Yue et al. (2006) and Blanchette & Bigioni (2009) did not highlight the mechanism
allowing partial coalescence to occur in absence of capillary waves. The transition
from partial to complete coalescence was not addressed well. In the present work,
we have attempted to simulate numerically the partial coalescence phenomenon
using a coupled level set and volume of fluid method (CLSVOF) to elucidate
the underlying physics and to solve the numerical challenges faced by the earlier
authors.

The volume of fluid (VOF) method of Hirt & Nichols (1981) forms the building
block of computations involving two fluids separated by a sharp interface. In this
approach, the grid is fixed and the interface is approximated within each cell through
which it passes. Hirt & Nichols (1981) represented the interface by a piecewise-
constant line in each two-fluid cell, either vertically or horizontally. A significant
improvement of the interface representation was achieved by Youngs (1982) by
introducing a piecewise-linear method (piecewise-linear interface calculation, PLIC).
The method of Youngs was shown to be very robust and efficient, but only of
first-order accuracy. An improved version of the phase interface representation [least
square volume interface reconstruction algorithm-(LVIRA)] was devised by Puckett
et al. (1997).

Welch & Wilson (2000) modified the VOF method to simulate two-dimensional
boiling flows and their approach was used in subsequent work in simulating film
boiling including conjugate heat transfer with a solid wall (Welch & Rachidi 2002,
and in simulating film boiling including the temperature dependence of fluid properties
near the critical point Agarwal et al. 2004). The VOF method satisfies compliance
with mass conservation extremely well. The disadvantage of VOF method is that
sometimes it is difficult to capture the geometric properties of the complicated
interface.

An efficient interface-capturing method, known as the level set (LS) method, was
first introduced by Osher & Sethian (1988). The method is capable of computing
the geometric properties of highly complicated boundaries without explicitly tracking
the interface. In this method, the boundary of a two-fluid interface is modelled
as the zero set of a smooth function φ defined on the entire physical domain. The
boundary is then updated by solving a nonlinear equation of the Hamilton–Jacobi
type on the whole domain. The LS method captures the interface very accurately;
however, it may lead to violation of mass conservation if improperly implemented.
Sethian (1999) developed a special implementation technique for accurate compliance
with mass conservation. Another approach to achieve mass conservation is to couple
the LS methodology with the VOF method. In the CLSVOF method (Sussman &
Puckett 2000), the LS function is used only to compute the geometric properties
(normal and curvature) at the interface while the void fraction is advected using
the VOF approach. Tomar et al. (2005) and Chakraborty et al. (2009) extended the
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method to simulate bubble growth in water and the dynamics of air bubble from
submerged orifice in reduced gravity, respectively.

When a drop of liquid 1 impacts a liquid 1–liquid 2 interface, the impact either
generates a daughter/secondary droplet of liquid 1 or the impacting drop is absorbed
without engendering a secondary droplet. The first case will be referred to as a
partial coalescence and the later as complete coalescence. The present investigation
consists of a computational study and identification of various coalescence events,
with emphasis on the conditions and mechanisms leading to partial coalescence and
generation of secondary droplets upon the initial impact of a drop of liquid 1 on
a liquid 1–liquid 2 interface. We explore the critical values of appropriate non-
dimensional parameters for which transition from complete to partial coalescence
occurs. The proper explanation pertaining to the mechanism of partial coalescence is
still a challenge to be solved. Gilet et al. (2007a) have showed experimentally how
the capillary waves affect the outcome of the coalescence. We studied six different
cases and tried to get better insights into the mechanism of partial coalescence.
An interesting question also addressed in this section is whether the process of
coalescence is monotonic or involves oscillations of the coalescing drop before it
is engulfed in the bulk phase. We show that this question is intimately related
to the transition from partial to complete coalescence. We also investigate the
possibility of finding self-similarity of profiles at the onset of complete coalescence
regime.

Rest of the paper is arranged as follows: the governing equations and the CLSVOF-
based numerical approach to solve them are described in § 2. The steps used in the
numerical method are explained in detail. In § 3, our results are validated with previous
experimental results. The results of the phenomenon of partial coalescence and the
occurrence of complete coalescence are shown and discussed in § 4. A discussion § 5
is added where the criteria for partial coalescence are discussed. Finally, we draw
conclusions on the various aspects of the process in § 6.

2. Computational domain and numerical method
Complete numerical simulation of the processes of partial coalescence is performed

for a two-dimensional incompressible flow which is described in axisymmetric
coordinates (r, z) as shown in figure 1 (a, b). The rectangular domain has height
H = 7D and width R = 3D. The depth of the lower bulk liquid is H1 = 3D. The
drop is released at H2 = 0.1D from the flat interface, where D is the initial drop
diameter. The drop falls due to gravity force in the z direction. The change in its
shape and velocity because of the resistance of the surrounding fluid are included in
our computations. In liquid–liquid systems the rupture is mostly off centre as shown
by Gilet et al. (2007a). Charles & Mason (1960a) had mentioned about three types of
film rupture, in centre, off centre and double rupture. In all the cases as the initial neck
extends in all direction, the flow becomes nearly symmetry. Though our assumption of
axial symmetry model does not take into account the initial stages of coalescence, but
it accurately captures the later stages of the phenomena as shown in our validations
in § 3. The drop shape is important in case of gravity-driven motion of the droplet
impacting on liquid–liquid interface. In our simulations for high gravitational force
deformation of drop and the interface are captured well. The governing equations and
the boundary conditions used for this computational domain are described below. An
outline of numerical method is also given.
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Figure 1. (a) Computational domain for partial coalescence phenomenon on an (r, z) plane,
(b) A typical two-phase cell with piecewise linear interface.

2.1. Governing equations

The mass and momentum conservation equations for incompressible Newtonian fluids
for the liquids 1 and 2 are given by

∇ · V = 0, (2.1)

ρ

(
∂V
∂t

+ ∇ · V V
)

= −∇P + ρg + ∇ · [µ(∇V + (∇V )T )] + fsv, (2.2)

where, V is the velocity vector, P is the pressure and fsv is the surface tension force
per unit volume.

At the interface, the modified momentum equation incorporating surface tension
force due to Brackbill, Kothe & Zemach (1992) becomes

ρ

(
∂V
∂t

+ ∇ · V V
)

= −∇P + ρg + ∇ · [µ(∇V + (∇V )T )] + σκnδs, (2.3)

where σ is the surface tension force, n is the unit normal vector at the interface
(figure 1b), κ is the mean curvature of the interface and δs is the interface delta
function.

In the computational domain under consideration, the particular phase (liquid 1 or
liquid 2) is defined by the volume fraction F in a control volume as the fraction of
the liquid inside a cell as

F = (ρ − ρ2)/(ρ1 − ρ2), F =

⎧⎪⎨
⎪⎩

0 liquid 2 cell,

1 liquid 1 cell,

0 < F < 1 interface between liquid 1 and liquid 2.

(2.4)

The motion of the moving interface is computed by solving the advection equation
for the volume fraction F . The advection equation in its conservative form can be
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written as
∂F

∂t
+ ∇ · (VF ) = 0. (2.5)

The CLSVOF method combines the advantages of both the LS and VOF methods.
The VOF advection ensures mass conservation and the smoothness of the additionally
computed LS function allows the use of simple finite differencing schemes for the
calculation of the interface normal vector and the curvature of the interface.

In the LS method, a smooth function φ is used to represent the interface. The
function φ(r, t) at a point with position vector r and at a time instant t assumes
values as follows:

φ(r, t)

⎧⎪⎨
⎪⎩

< 0 in the liquid 2 region,

= 0 at the interface,

> 0 in the liquid 1 region.

(2.6)

The LS function chosen here is maintained as the signed distance from the interface
close to the interface. Hence, near the interface,

φ(r, t)

⎧⎪⎨
⎪⎩

= −d in the liquid 2 region,

= 0 at the interface,

= +d in the liquid 1 region,

(2.7)

where d = d(r) is the shortest distance of the interface from point r . From such a
representation of the interface, the unit normal vector n and the mean curvature κ

are simply,

n =
∇φ

|∇φ| (2.8)

and

κ = −∇ · n = −∇ · ∇φ

|∇φ| = −
(

φ2
yφxx − 2φxφyφxy + φ2

xφyy(
φ2

x + φ2
y

)3/2

)
. (2.9)

Using the LS formulation due to Chang et al. (1996), the momentum equation for
incompressible two-phase flow becomes

ρ(φ)

(
∂V
∂t

+∇ · V V
)

= −∇P +ρ(φ)g +∇ · [µ(φ)(∇V +(∇V )T )]+σκ(φ)∇H (φ). (2.10)

In this method using the initially known position of the interface (the LS function),
the interface is captured by solving the advection for the LS function as

∂φ

∂t
+ ∇ · (Vφ) = 0. (2.11)

The density and viscosity are derived from the LS function as

ρ(φ) = ρ1H (φ) + ρ2(1 − H (φ)) (2.12)

µ(φ) = µ1H (φ) + µ2(1 − H (φ)) (2.13)

where H (φ) is the Heaviside function,

H (φ) =

⎧⎪⎪⎨
⎪⎪⎩

1 if φ > ε,

1

2
+

φ

2ε
+

1

2π

{
sin

(
πφ

ε

)}
if |φ| � ε,

0 if φ < −ε,

(2.14)
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where ε is the interface numerical thickness which we have taken in our simulations as
0.1�r (�r refers to the size of a mesh cell). By using the smoothed Heaviside function,
one effectively assigns the interface a fixed finite thickness of a small parameter of the
order ε, over which the phase properties are interpolated. The details of numerical
solutions were well documented by Gerlach et al. (2006). The numerical simulations
were performed using an in-house code that was tested rigorously for different test
cases reported in the literature.

2.2. Boundary conditions

Figure 1 (a, b) shows the domain of interest for the present investigation. The
simulation is axisymmetric two-dimensional. At the axis of symmetry (r = 0) we
set that no fluid exits the domain and the gradient of the velocity must not have a
kink:

V · n =0, (n · ∇V ) × n = 0. (2.15)

The sidewall (r = R) is considered to be frictionless, therefore the same boundary
conditions as at the symmetric axis must hold.

At the bottom wall (z =0) we have the no-slip and impermeability conditions:

n × V = 0, V · n = 0. (2.16)

At the outflow (z = H ) we have natural Neumann conditions:

n · ∇V = 0. (2.17)

The conditions for pressure for the whole boundary is

n · ∇P = 0. (2.18)

2.3. Outline of the computational method

A staggered grid arrangement (Harlow & Welch 1965) is used as the basis for
the numerical algorithm. The convective term in the momentum equation (2.3) is
discretized by an essentially non-oscillatory (ENO) scheme of second order (Chang
et al. 1996). All other space derivatives are centred. Suppose the void fraction
distribution F n at time tn = n�t is known, and the densities and the viscosities
at tn are calculated based on the Heaviside function. The continuity and momentum
equations are discretized in time as

∇ · V n+1 = 0, (2.19)

V n+1 = V n + (−∇ · (V nV n) + g

+
−∇P n+1 + ∇ · µ(φn)(∇V + (∇V )T )n + σκ(φn)∇H (φn)

ρ(φn)

)
�t. (2.20)

The velocity for the new time step is provisionally predicted from the momentum
equations. The predicted velocities are subsequently corrected from the discretized
continuity equation using the criterion of divergence-free velocity field. The pressure
equation is solved by an iterative method based on a preconditioned Bi-conjugate
gradient stable method (Bi-CGSTAB) of VanderVorst (1992). Preconditioning is a
strategy by which the number of iterations required for convergence is reduced. It
involves multiplying the matrix equation throughout by a suitable matrix, so that the
modified problem requires a smaller number of iterations than the original problem.
A gradient method seeks to minimize the measure of residual by deriving a sequence
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of estimates with residuals until the residual is zero, which gives the exact solution.
Once the pressure at the new time level has been obtained, the velocity at the new
time level is found from the discrete momentum equation. The numerical scheme
is based on the explicit time advancement strategy. The solution scheme described
above is second order in space and first order in time. Based on the velocity field
at the new time step, a coupled second-order conservative operator split advection
scheme is used for discretization of (2.5) and (2.11) as described by Rudman (1997).
This is done in four steps as follows:

(i) The LS function and void fraction are fluxed across the cell boundaries in one
direction.

(ii) The interface is reconstructed using the newly obtained void-fraction field and
LS function. In this step, the interface normal vector can be calculated using the LS
function in all two-phase cells. The length l (figure 1b) is adjusted to match the given
void fraction with the reconstructed interface to locate the interface.

(iii) The LS function and void fraction are fluxed across the cell boundaries in the
other direction.

(iv) The interface is again reconstructed using the newly obtained void-fraction
field and LS function as described step (ii).

The flux directions are swapped after every time iteration. At each time step after
finding the updated LS function φn+1 and the VOF function, F n+1, the LS function is
reinitialized to the exact signed normal distance from the reconstructed interface by
coupling the LS function to the volume fraction (Sussman & Puckett 2000).

2.4. Scaling analysis

The coalescence behaviour in liquid–liquid system is governed by the interfacial
tension, gravity and the viscosity forces in both liquids. The physical parameters
which are involved are surface tension σ , densities of the two liquids ρ1 and ρ2,
viscosities of the two liquids µ1 and µ2, acceleration due to gravity g, and the
initial drop diameter D. In liquid–liquid system, the densities of the two liquids
is represented using mean density, ρm = (ρ1 + ρ2)/2. Thus the seven-dimensional
parameters are ρm, µ1, µ2, σ , g, D and density difference ρc = ρ1 − ρ2. There are
three independent fundamental physical quantities- length, mass and time. Using
Buckingham π theorem four non-dimensional numbers are obtained, Bond number,
Bo = ρcgD2/σ , the Ohnesorge numbers, Oh1 = µ1/

√
ρmσD and Oh2 = µ2/

√
ρmσD

and the Atwood number, A= ρc/2ρm. The length scales are non-dimensionalized using

drop diameter D, and the time is scaled by capillary time, τc =
√

ρmD3/σ . Thus non-
dimensional length and non-dimensional time scales are function, f (Oh1, Oh2, Bo, A)
of these four non-dimensional numbers.

3. Validation of numerical approach
3.1. Space and time resolution

In order to compare our results with others, the experimental results of Chen et al.
(2006a) were chosen, showing a water drop coalescing with an oil–water interface.
The oil-based matrix fluid is 20 % polybutene in decane. The dimensional and non-
dimensional parameters used here are shown in table 1. To show the grid independent
test four different grid sizes are taken: 150×350, 300×700, 375×875 and 450×1050.
Table 2 shows different values of secondary drop diameter for different grids. The
percentage difference for 150 × 350 and 300 × 700 is around 2 %, while for 300 × 700
and 375 × 875 grids the difference is around 1 %. For 375 × 875 and 450 × 1050, the
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Parameter Values

D 1.1 mm

ρ1 1000 kg m−3

ρ2 760 kgm−3

µ1 0.001 Ns m−2

µ2 0.002 Ns m−2

σ 0.0297 N m−1

Oh1 0.0058
Oh2 0.0117
Bo 0.0958
A 0.136

Table 1. Properties of the reference fluid: oil–water system (oil-based matrix fluid is 20 %
polybutene in decane).

Grid Secondary drop diameter (mm)

150 × 350 0.306
300 × 700 0.299
375 × 875 0.296
450 × 1050 0.296

Table 2. Grid independent test for oil–water system (oil-based matrix fluid is 20 %
polybutene in decane).

value of secondary drop is same. In our simulations, a grid of 375 × 875 is taken. We
chose the time step as �t = 10−6 s for all the simulations. The time step is taken as

less than the capillary time, �t � 0.5
√

ρm(�x)3/πσ . The capillary time in our study
is 1.27 × 10−6 s.

3.2. Qualitative comparison

The process of partial coalescence is completed in primarily two stages. When the
drop comes in contact with the interface, it floats on the liquid surface for a few
seconds. Then slowly the film between the drop and the interface grows thinner and
thinner until it ruptures to create a hole. The second stage of the partial coalescence
process is the pinch-off of a secondary drop. In figure 2(a–l ), different interfacial
phenomena for partial coalescence are shown and compared with the experiments of
Chen et al. (2006a). As the matrix fluid ruptures, the interface momentarily becomes
singular and the contact region expands rapidly. The rupture of the film is due to van
der Waals force when the thickness becomes less than 100 nm. This sets off a surface
capillary wave propagating up to the drop surface and radially outwards along the
initially flat interface. The drop fluid drains into the bulk due to capillary pressure
inside the drop and gravity. When the capillary wave reaches the top of the drop, it
imparts a vertical velocity to the interface there, thus lifting it upwards. This slight
lift can be seen in figure 2(g), where the drop crosses the dotted line indicating the
initial drop height. A liquid column is formed which gradually becomes thin. At a
certain point (figure 2i ), necking sets at the base of the column and a secondary drop
pinches off (figure 2k ). The numerical results show very good agreement with the
experimental results. Figure 3 show the experimental results of Gilet et al. (2007a)
and our simulated profiles. Gilet et al. (2007a) have mentioned in their experiments
that when the liquid 1 drop is very close to the liquid 1–liquid 2 interface, the liquid
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Figure 2. Qualitative comparison between present numerical and experimental results of
Chen et al. (2006a) for partial coalescence process with a drop diameter 1.1 mm, Oh1 = 0.0058,
Oh2 = 0.0117, Bo = 0.0958 and A = 0.136. The profiles are 542 µs apart in time. The horizontal
line, which are at the same height in all three rows, help in tracking the motion of the top of
the drop.

2 film rupture is off centric. Since we have assumed axisymmetric model, we cannot
capture the off centric rupture but as shown in figure 3, at further time steps our
results show good match with the work of Gilet et al. (2007a).

3.3. Quantitative comparison

Earlier investigations (Aryafar & Kavehpour 2006; Chen et al. 2006a) mentioned the
specific range of diameter for which partial coalescence occurs. Chen et al. (2006a)
have further divided this range into three regions. For small drops, they described the
partial coalescence phenomena as being governed by viscous effects. For larger drops,
the gravitational effect is the main force. For the medium range of drops, viscous
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(a)
(b)

Figure 3. Qualitative comparison between experimental results of Gilet et al. (2007a) (a) and
present numerical results (b) for partial coalescence process with Oh1 = 0.002, Oh2 = 0.014,
Bo = 0.15. The profiles are 0.045τc apart in time.

and gravitational effects are negligible and the inertia and capillary forces become
dominant. In this medium range it is observed that the secondary to primary drop
ratio, ζ has a nearly constant value of 0.54. Thus the secondary drop formed after
partial coalescence is nearly half the size of the initial drop. This region is named
the inertio-capillary regime by Chen et al. (2006a). The process of partial coalescence
repeats for the secondary drop in a self-similar manner, as the density of the fluids
does not change.

For the other two regimes, the gravity-dominant regime is named the gravity regime
and the viscous-dominant regime the viscous regime. In the gravity regime there is a
maximum drop diameter (DU ) at which the phenomenon of partial coalescence is not
observed. Drops equal to and larger than this particular diameter completely coalesce
after impact. After the film has ruptured, the larger drop drains off quickly into the
bulk fluid due to more gravity force. Hence the size of secondary drop formed is less
than half the size of the primary drop. When the drop size is DU it is seen that the
drainage is so fast that necking no longer occurs, thereby completely coalescing the
drop with the bulk fluid. In the other case, for a very small drop, the viscous effect
prevents the capillary waves from travelling through the liquid column formed. As
the drop size gradually decreases, more resistance to capillary force is created and
so gradually the secondary drop size becomes smaller. At a particular diameter DL,
necking formed in the interface cannot be sustained and the drop completely coalesces.
This is the minimum diameter below which the partial coalescence phenomenon is
not observed.
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Figure 4 explains this phenomenon clearly. The solid circles represent the
experimental results of Chen et al. (2006a) and the hollow squares are the results
obtained in our numerical simulations. According to previous studies (Yue et al.
2006), DL lies between 39 and 78 µm and DU between 1 and 2 cm. In our simulations,
DL is obtained as 49 µm and DU as 1.09 cm. Our results shows excellent agreement
with the experimental values.

4. Results
4.1. Coalescence cascade: the self-similar behaviour

We started our simulation with the dimensionless parameters as Oh1 = 0.0058,
Oh2 = 0.0117, Bo = 0.0958 and A= 0.136. Figure 5 reveals that at t = 0.75τc we
observe the first pinch-off. After a few time steps, at t = 2τc we observe a tertiary
drop. The diameter ratios in the two steps are 0.54 and 0.47, respectively. The process
of partial coalescence completes in a cascade of two steps.

This kind of cascade is described in literature. Honey & Kavehpour (2006) started
with a drop diameter of 1.2 mm in water and air system and observed two steps in
a cascade with secondary and tertiary drop diameters equal to 0.64 and 0.32 mm,
respectively. The drop diameter ratio is nearly the same as ours via the cascade
i.e. 0.50 ± 0.05. Furthermore, the process of tertiary drop formation in a liquid–
liquid system is slower than that in liquid–air system. The viscosity of the matrix
liquid is responsible for this difference. In the inertio-capillary regime, the process
of partial coalescence repeats itself in a self-similar fashion (Charles & Mason
1960b; Pikhitsa & Tsargorodskaya 2000; Thoroddsen & Takehara 2000). It may be
mentioned that Charles & Mason (1960b) observed up to eight steps in a cascade
by performing experiments for systems of two immiscible liquids. Vandewalle et al.
(2006) showed a cascade of partial coalescence for soapy water with air as the matrix
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Figure 5. Coalescence cascade showing secondary and tertiary drop. The parameters are
Oh1 = 0.0058, Oh2 = 0.0117, Bo = 0.0958 and A = 0.136.

fluid. They observed six successive steps in partial coalescence starting from a 1 mm
droplet. Thoroddsen & Takehara (2000) in experiments on liquid (water, alcohol and
mercury) and air systems observed up to six steps in a cascade, starting with a drop
diameter around 3 mm. When coalescence cascade occurs, the ratio of viscous to
surface forces increases as the drop size decreases. The diameter of the drop decreases
to a critical diameter and the drop fully coalesces.

Figures 6(a) and 6(b) describe the shape and motion of the daughter drop,
respectively, before it comes to contact with the interface. After the pinch-off, the drop
assumes a prolate shape (I) with the drop base close to the liquid–liquid interface. In
the figure the liquid–liquid interface depth is defined as the crater depth. In the course
of time, the drop slowly moves down and attains an oblate shape (III), and then
gradually becomes spherical (X). During this entire time, the crater depth gradually
increases and reaches a maximum depth after which the interface again moves up.
The interface moves up and the falling drop comes in contact. Subsequently, the
second stage of partial coalescence cascade sets in. Similar phenomena are repeated
for the tertiary drop.

4.2. Multiple secondary drops from a parent drop

Figure 7 shows the formation of two secondary drops of unequal size and their merger.
The dimensionless parameters for this simulation are Oh1 = 0.0021, Oh2 = 0.0043,
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Figure 6. (a) Shape of the daughter drop. (b) Dynamics of secondary and tertiary drop
motion. The parameters are Oh1 = 0.0058, Oh2 = 0.0117, Bo = 0.0958 and A = 0.136.

Bo =5.2 and A= 0.136. The process is same as described above until t = 0.039τc

when necking occurs at two places, one at the bottom of the column and the
other at the middle. This is due to more capillary waves moving up the column.
The necking at the middle of the liquid column is due to Rayleigh instability. At
t =0.04τc, two secondary drops are formed. These two drops later merge to form



86 B. Ray, G. Biswas and A. Sharma

–0.001 0 0.001

0.003

0.004

(a) t = 0.012τc

–0.001 0 0.001

0.003

0.004

(b) t = 0.02τc

–0.001 0 0.001

0.003

0.004

(c) t = 0.024τc

–0.001 0 0.001

0.003

0.004

(d) t = 0.028τc

–0.001 0 0.001

0.003

0.004

(e) t = 0.032τc

–0.001 0 0.001

0.003

0.004

(f) t = 0.036τc

–0.001 0 0.001

0.003

0.004

(k) t = 0.044τc

–0.001 0 0.001

0.003

0.004

(l) t = 0.048τc

–0.001 0 0.001

0.003

0.004

(g) t = 0.039τc

–0.001 0 0.001

0.003

0.004

(h) t = 0.0391τc

–0.001 0 0.001

0.003

0.004

(i) t = 0.04τc

–0.001 0 0.001

0.003

0.004

(j) t = 0.041τc

Figure 7. Formation of two secondary drops. The parameters are Oh1 = 0.0021,
Oh2 = 0.0043, Bo =5.2 and A = 0.136.

a single drop. Charles & Mason (1960b) had observed that a primary water drop
with initial diameter more than 6 mm yields two secondary drops of unequal size
when coalescing with a benzene–water interface. Similar pinch-off have been shown
by Duchemin et al. (2002). There the jet formed after bubble bursting, split into small
drops due to Rayleigh Plateau instability.

4.3. Relative effect of inertia with respect to interfacial tension:
the inertio-capillary regime

The diameter ratio is function of Ohnesorge numbers, Bond number and Atwood
number, dsecondary/D = f (Oh1, Oh2, Bo, A). In figure 8(a), the diameter ratio is plotted
for various A. Atwood number ranges from 0.136 � A � 0.8. The other parameters
are 0.0958 � Bo � 0.35, 0.0058 � Oh1 � 0.0075 and 0.0117 � Oh2 � 0.014. The
diameter ratio is seen to be nearly constant at 0.54 for the secondary to primary drop
ratio, and 0.43 for the tertiary to secondary drop ratio. The time taken starting from
the impact of the drop on the interface to the pinch-off of a daughter drop is defined
as the pinching time, τp . For different A, τp values are nearly constant for secondary
drops and also for tertiary drops, as shown in figure 8(b). Thus the diameter ratio (ζ )
and pinching time (τp) are seen to be invariant with respect to the Atwood number.
In our results the Atwood number shows the asymptotic regime of the function,
f (Oh1, Oh2, Bo, A). The Atwood number dose not give any correlation with the
diameter ratio for this regime. Previously Gilet et al. (2007a) had also shown such
asymptotic regime with the value to be approximately 0.45 for Atwood number less
than 20 % and negligible Bo, Oh1 and Oh2. Thus, it is actually an asymptotic constant
value for different Atwood numbers that characterizes the so called inertio-capillary
regime.
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Figure 9. Complete coalescence of drop for parameters, Oh1 = 0.031,
Oh2 = 0.0117(Oh1 > Oh2), Bo = 0.0958 and A = 0.136.

4.4. Relative effect of viscosity with respect to interfacial tension: the viscous regime

We have previously mentioned the minimum drop diameter DL for which partial
coalescence is not observed. This corresponds to a maximum Ohnesorge number.
Figure 9 shows different steps depicting the complete coalescence of the drop. The
non-dimensional parameters for this case are Oh1 = 0.031, Oh2 = 0.0117, Bo = 0.0958
and A= 0.136. After the film has ruptured, the capillary wave moves towards the drop
apex, which is shown by the arrows in the figure up to t = 0.31τc. From t = 0.39τc
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Figure 10. Complete coalescence of drop for parameters, Oh1 = 0.3,
Oh2 = 0.0058(Oh1 � Oh2), Bo = 0.0958 and A = 0.136.
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Figure 11. Complete coalescence of drop for parameters, Oh1 = 0.0058,
Oh2 = 0.3(Oh2 � Oh1), Bo = 0.0958 and A =0.136.

to 0.47τc, a column shape is formed. At t =0.6τc, necking starts and gradually the
interface deforms to a spherical shape at t = 0.95τc. Due to the high viscous force
inside the sphere, the drop starts to drain out into the bulk liquid and pinch-off does
not occur. The capillary waves responsible for the pinch-off at the neck are highly
damped due to the high viscous effect. From t = 1.08τc to 1.12τc, again a columnar
shape is formed. The necking of this column starts at t = 1.16τc, leading to a spherical
shape. Finally, the drop completely merges with the bulk liquid.

When the viscosity of liquid 2 is increased by a slight amount (Oh2 = 0.1179), the
collapse of the drop takes place in a similar manner. This is explained in detail in
§ 4.6. For more higher viscosity of the liquid 1 or liquid 2, the drop collapses in a
different manner, as shown in figures 10 and 11. In both cases, the drop after coming
in contact with the bulk liquid collapses rapidly.

Figure 12(a) shows the influence of the Ohnesorge numbers (Oh1, Oh2) on ζ

for Bo =0.0958 and A=0.136. As Oh2 increases the diameter ratio decreases
smoothly. The critical value for partial coalescence is obtained as Oh2C ≈ 0.12
(for Oh1 = 0.0058). A totally different trend is observed in the case of increasing
Oh1. Here it is observed that the diameter ratio decreases very sharply. The critical
value for the Ohnesorge number is Oh1C ≈ 0.035 (for Oh2 = 0.0058). The difference
between their influences is explained by the viscosities of the two liquids. When the
viscosity of the drop is increased while keeping the viscosity of the matrix liquid
constant, the capillary wave is gradually damped out. Above a critical viscosity, the
drop completely merges. A different phenomenon occurs when the drop viscosity
is kept constant and the viscosity of matrix liquid is increased. In this case, the
process of emptying of the drop depends on the increasing viscous force applied by
the matrix liquid on the drop. Therefore, the change of Ohnesorge numbers shows
different trends. The results presented in figure 12(a) and the results of figure 4 in
Gilet et al. (2007a) have similar trend of variation of the diameter ratio with Oh1

and Oh2.
Figure 12(b) shows the variation of pinch-off time (τp) as a function of Oh1. The

pinch-off time increases as the viscosity of the drop is increased. As the viscosity of
the drop is increased, the capillary waves moving towards the drop apex are damped
out. The columnar shape formation takes time and so the necking process is also
delayed. When both the viscosities of liquids 1 and 2 are changed, the coalescence
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Figure 12. (a) Diameter ratio (ζ ) versus Oh1 and Oh2. (b) Pinch-off time (τp) versus Oh1.
(c) Pinch-off time (τp) versus Oh1/Oh2 with other parameters as Bo = 0.0958 and A = 0.136.
Length and time are non-dimensional.

time is nearly same, as shown in figure 12(c). Hence for a viscosity ratio ranging from
0.2 to 6, the process of pinch-off does not vary much.

4.5. Relative effect of gravity with respect to interfacial tension: the gravity regime

For a high gravitational force, the value of the Bond number increases. The
non-dimensional parameters taken are Bo =9.83, Oh1 = 0.0057, Oh2 = 0.114 and
A= 0.149. Figure 13 reveals that the thin film below the drop drains out slowly with
time, finally creating a hole in the drop when it comes in contact with the interface.
Here at t = 0.30τc a small matrix drop, also called satellite drop, is seen to be trapped
during film rupture. Such an entrapment was observed by Thoroddsen, Etoh &
Takehara (2003) and Chen et al. (2006b). Chen et al. (2006b) have used the drop
liquid as 0.18 wt.% PEO in water and the matrix liquid as decane (ρ1 = 1000 kg m−3,
ρ2 = 740 kg m−3, µ1 = 0.0015 Ns m−2, µ2 = 0.001 Ns m−2, σ =0.032 N m−1 and cor-
responding non-dimensional parameters are Oh1 = 0.0082, Oh2 = 0.0057, Bo =0.136
and A= 0.149). Gradually at t = 0.52τc the drop completely drains into the bulk liquid
due to high gravitational pull, leading to complete coalescence. The formation of the
satellite drop is observed for the grid resolutions of 150×350, 300×700 and 375×875.



90 B. Ray, G. Biswas and A. Sharma

–0.001–0.0005 0 0.0005 0.001
0.0030

0.0035

0.0040

0.0045

–0.001–0.0005 0 0.0005 0.001
0.0030

0.0035

0.0040

0.0045

–0.001–0.0005 0 0.0005 0.001
0.0030

0.0035

0.0040

0.0045

(a) t = 0.15τc (b) t = 0.22τc (c) t = 0.30τc 

–0.001–0.0005 0 0.0005 0.001
0.0030

0.0035

0.0040

0.0045

–0.001–0.0005 0 0.0005 0.001
0.0030

0.0035

0.0040

0.0045

–0.001–0.0005 0 0.0005 0.001
0.0030

0.0035

0.0040

0.0045

(d) t = 0.37τc (e) t = 0.45τc (f) t = 0.52τc 

Figure 13. Complete coalescence of drop for parameters, Bo = 9.83, Oh1 = 0.0057,
Oh2 = 0.114 and A = 0.149.

The simulations are valid for Bo = 9.83. For the smaller Bo, finer grids are required to
observe the formation of the satellite drop. Also for very small Bo, when drop comes
close to the interface, it does not deform much. So liquid 2 is not trapped between
the drop and the interface. This prevents the formation of satellite drop. Admittedly,
a full three-dimensional analysis is more appropriate for such a film breakup.

The gravitational pull on the drop may affect the process of partial coalescence as
the drop liquid tends to drain out on the underlying bulk liquid. On changing gravity,
Bo is changed. All other parameters are kept fixed (Oh1 = 0.00533, Oh2 = 0.00387
and A= 0.136) to study the relative effect of gravity with respect to interfacial tension.
For low Bond numbers, the process of partial coalescence for different gravity levels
does not vary much. In figure 14(a), d1, d2 and d3 represents the primary, secondary
and tertiary drop diameters, respectively. It can be seen that the secondary to primary
diameter ratio (ζ = d2/d1) is independent of Bo and has a fixed value of 0.52, which
defines the asymptotic inertio-capillary regime described earlier. As Bo increases
beyond 0.09, ζ gradually decreases and at a critical value BoC ≈ 7 total coalescence
is observed. After the second pinch-off, the tertiary to secondary drop diameter ratio
(ζ = d3/d2) is also plotted as shown by dotted lines in the figure.

With increase in Bond number, the pinch-off time (τp) gradually decreases, as shown
in figure 14(b). As the Ohnesorge numbers are low, the capillary wave in this case
can move towards the drop apex with little resistance. Due to increasing downward
gravitational pull, more liquid 2 tends to neck the liquid 1 column leading to quick
pinch-off. At very high gravitational pull, the liquid 1 column does not form and
therefore no pinch-off occurs.

The magnitude of pinch-off time in figure 12(b) and in Blanchette & Bigioni (2009)
are different as they are non-dimensionalized by different parameters. Blanchette &

Bigioni (2009) have used capillary time τc =
√

ρ1D3/σ and in our simulations

τc =
√

ρmD3/σ where ρ1 is the density of drop liquid and ρm is the mean density.
Also the Ohnesorge numbers are defined differently in both cases. In the work of
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Figure 14. (a) Diameter ratio (ζ ) versus Bo. (b) Pinch-off time (τp) versus Bo with other
parameters as Oh1 = 0.00533, Oh2 = 0.00387 and A = 0.136. (c) Pinch-off time (τp) as a function
of Oh1 and Bo. Length and time are non-dimensional.

Blanchette & Bigioni (2009), Oh1 = µ1/
√

ρ1σD and in this paper two Ohnesorge
numbers are used as Oh1 = µ1/

√
ρmσD and Oh2 = µ2/

√
ρmσD. Although the time

values are significantly different in both the cases, the plots resemble the same
qualitative trend. A more appropriate comparison of the results would be with
the work of Chen et al. (2006a). In figure 14(c) the pinch-off time (τp) is plotted
as a function of Bo and Oh1. Chen et al. (2006a) have obtained the relationship
between pinch-off time and Ohnesorge and Bond number as, τp = 0.77(1 + 9.68Oh)
and τp =0.77(1 + Bo)−0.5. They have used the liquid 1 density (ρ1) to calculate the
capillary time and the Ohnesorge number. From our simulations, the pinch-off time
is related to Ohnesorge number as τp = 0.68(1 + 10.58Oh1) and to Bond number as
τp = 0.68(1 + Bo)−0.35.

4.6. Mechanism of partial coalescence

The criterion for partial coalescence can be obtained from the critical Ohnesorge
numbers (Oh1C, Oh2C) and the Bond number (BoC). Figure 15(a) show the critical
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Figure 15. (a) Surface plot for the critical Ohnesorge number Oh1C as a function of Oh2

and Bo. (b) Contour plot for the critical Ohnesorge number Oh1C as a function of Oh2 and
Bo. (c) Surface plot for the critical Ohnesorge number Oh2C as a function of Oh1 and Bo.
(d ) Contour plot for the critical Ohnesorge number Oh2C as a function of Oh1 and Bo. (e)
Surface plot for the critical Bond number BoC as a function of Oh1 and Oh2. (f ) Contour
plot for the critical Bond number BoC as a function of Oh1 and Oh2. The Atwood number is
A =0.136.
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Ohnesorge number for liquid 1 as a function of Oh2 and Bo. The range of Oh2 and
Bo are 0.001 � Oh2 � 0.029 and 0.00098 � Bo � 1.16. As Oh2 increases for given
Bo, the critical value gradually decreases. The values of Oh1C remains almost same
on increasing Bo.

Figure 15(b) shows the variation of Oh2C with Oh1 and Bond number. The range
of Oh1 and Bo are 0.001 � Oh1 � 0.029 and 0.00098 � Bo � 1.16. The trend is
different from Oh1C . Here as Oh1 increases, the critical value (Oh2C) first increases
and then decreases. The values of Oh2C does not vary with change in Bo.

Figure 15(c) reveal the variation of BoC for different Oh1 and Oh2. The range of
Oh1 and Oh2 are 0.001 � Oh1 � 0.01 and 0.001 � Oh2 � 0.01. We see that BoC have
maximum range for Oh1 � 0.004 and Oh2 � 0.004. For Oh1 � 0.006, BoC gradually
decreases. For Oh2 > 0.004, BoC varies in a complex manner.

From figure 4 the critical value of Ohnesorge numbers for a fixed value of Bond
number and the critical value of Bond number for a fixed value of Ohnesorge numbers
are obtained. These critical Ohnesorge numbers and Bond number denote a point in
each of the phase diagram of figure 15.

Here six different cases are discussed, Case I for partial coalescence when Oh1 ≈
Oh2 and at normal gravity, Case II for partial coalescence when Oh1 < Oh2 and at
normal gravity, Case III for complete coalescence when Oh1 � Oh2 and at normal
gravity, Case IV for complete coalescence when Oh1 > Oh2 and at normal gravity,
Case V for partial coalescence when Oh1 ≈ Oh2 and at gravity higher than normal
gravity and Case VI for complete coalescence when Oh1 ≈ Oh2 and at gravity much
higher than normal gravity. The streamlines, u-velocity and v-velocity contours are
plotted for each case. The darker shade indicates the maximum negative value whereas
the lighter-shade represents maximum positive values of the velocity components.

Figure 16(a) shows the streamlines, u-velocity and v -velocity contours of Case I,
respectively. The other parameters are Bo =0.0958, Oh1 = 0.0058 and Oh2 = 0.0041.
When the drop touches the interface, the thin film beneath ruptures and then capillary
waves set in. The capillary waves are generated by the opening of the neck at the early
stage of coalescence. Some of these waves move up towards the drop apex and the
rest move away from the drop towards the side. The streamline shows the movement
of the capillary wave towards the apex of the drop. The instantaneous location during
the evolution is identified as A. For the capillary waves, with a wavelength much
smaller than the drop radius, the wave velocity is given by

√
(σk/ρm), where k is the

wavenumber. Such waves carry momentum to distort the drop when they converge
on the summit (Blanchette & Bigioni 2006). As more capillary waves converge at
the apex, the vertical collapse of the drop is retarded. Thus horizontal collapse leads
to the pinch-off of the drop. This competition between the horizontal and vertical
momentum is seen in u-velocity and v -velocity contours.

A different case of partial coalescence, Case II, is shown in figure 16(b). The
Bo =0.0958, Oh1 = 0.0058 and Oh2 = 0.0589(Oh1 <Oh2). Here the viscosity of
dispersed liquid (liquid 2) is very high compared with liquid 1. Unlike the previous
case, the drop does not convert to an elongated column shape. The velocity vector
plot shows that the drop is always below the dotted line. The dotted line signifies the
initial height of the drop.

In the case of complete coalescence, Cases III and IV, the vertical collapse exceeds
the horizontal collapse, as shown in figures 17(a) and 17(b). The non-dimensional
parameters are Bo = 0.0958, Oh1 = 0.0058 and Oh2 = 0.1179(Oh1 � Oh2) for Case
III and Oh1 = 0.0412 and Oh2 = 0.0058(Oh1 >Oh2) for Case V. Even though the
capillary waves move towards the drop apex, the vertical elongation of the drop
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is restricted by high viscosity. The drop height (height of the elongated column) is
smaller than in the earlier case (figure 16a). The coalescence is complete or total
despite the presence of capillary waves.

Similar phenomena to those in figure 16(a) occur for high Bond numbers (Case
V). In figure 18(a) shows the case with Bo =1.966, Oh1 = 0.0058 and Oh2 = 0.0041.
Due to more gravitational pull, the drop sinks in and the interface becomes curved
before a hole is created. After the hole has been formed, the capillary wave moves
in a similar manner to that shown in figure 16(a). The only difference is that due to
more draining of the liquid 1, the secondary drop formed is smaller in this case.

After increasing the Bond number beyond a certain limit (Case VI), it is seen
that the secondary drop does not pinch off any more. Such phenomena are shown
in figure 18(b). The pertinent input parameters are Bo = 6.88, Oh1 = 0.0058 and
Oh2 = 0.0041. Here the downward horizontal motion of the drop is very high, as
shown by the darker-shade in v-velocity contours. More gravity leads to more vertical
momentum and thus pinch-off cannot occur. The capillary wave formed could not
move towards the drop apex due to the high downward pull.

For different Atwood, Bond and Ohnesorge numbers, the maximum drop height,
hdrop , and the maximum crater depth, hcrater after pinch-off are plotted. The
measurements are made from the initial liquid–liquid interface. From figure 19, it
is clear that the Atwood number has a negligible effect on hdrop and hcrater . As Bo
increases, the drop height and crater depth continue to have constant values until
at very high Bo the maximum depth of the crater increases and maximum height
of the drop gradually decreases. This is due to a greater downward gravitational
pull. A similar trend is observed for increasing Ohnesorge number but the rate of
change is less in this case. As viscosity of the drop increases, the size of the secondary
drop formed decreases. After pinch-off the interface crater moves to a greater depth.
It is interesting to note that in all the cases, the average value of hdrop ≈ 1.2 and
hcrater ≈ 0.045.

4.7. Transition from partial to complete coalescence

To understand the mechanism more clearly, the neck radius (Rneck) for the above six
cases is plotted with respect to time in figure 20(a). For the case of partial coalescence
(Case I and Case II) the neck radius oscillates only once and then reduces to zero.
In the case of complete coalescence due to high viscosity (Case III and Case IV), the
neck radius oscillate twice with time whereas in the case of complete coalescence due
to high gravity (Case V and Case VI) the neck radius reduce in one oscillation.

The transition from partial to complete coalescence due to increasing viscosity
of liquid 2 with other parameters as Bo = 0.0958, Oh1 = 0.0058 and A= 0.136 is
shown in figure 20(b). Two cases of partial coalescence corresponding to Cases
I and II are illustrated, which shows that at intermediate viscosity of liquid 2
(Oh2 = 0.0589), the pinch-off of the secondary drop takes more time. The transition
to complete coalescence is found at Oh2 = 0.1179 corresponding to Case III, where
the drop oscillates twice before collapsing into the bulk liquid. As the viscosity is
increased more to Oh2 = 0.3 corresponding to figure 11, the number of oscillations
reduces. For very high Oh2 = 0.589, the contact of the drop with the interface takes
more time and so the curve in figure 20(b) is seen to shift towards the right, but
the number of oscillations does not change. For high viscosity, it is seen that the
maximum neck radius increases, which indicates more spreading of the drop before
collapsing. Similarly, when the liquid 1 Ohnesorge number is increased to Oh1 = 0.3
corresponding to figure 10, the neck oscillates only once during complete coalescence.
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Thus it is clear from the above results that number of oscillations of the neck radius is
a critical parameter which decides the transition from partial to complete coalescence.

In this transition regime where the neck radius oscillates twice, we get self-silimar
column profiles. In the complete coalescence process in figure 9, it is seen that the
profiles from t = 0.39τc to 0.6τc are similar and again the profiles from t =1.08τc to
1.16τc are similar. These profiles are shown in figures 21(a) and 21(c). As time elapses,
the column grows in height and later as the gravity effect dominates, the column stops
growing. They both show a self-similar character for the column structure, which is
shown in figures 21(b) and 21(d ). By characterizing the column’s growth profiles using
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power-law scaling, one could derive useful information about the dynamics of drop
coalescence. We have examined the sidewall profile of the column and excluded the
base of the column. All the profiles starting from t =0.39τc until 0.6τc collapse on a
single profile shown on figure 21(b). For t = 1.08τc to 1.16τc again the profiles collapse
on a single profile (figure 21d ).

The column profile is fitted with the general solution form for the kinetic free-surface
problem by Hogrefe et al. (1998): z = atλ(rtη)ν . Here z and r are the coordinates of
a point located on the column sidewall. The original dimensional frame (z, r, t) is
non-dimensionalized to (z∗, r∗, t∗) by scaling z and r with drop radius, t is scaled
using viscous time, τv = D2ρm/µm. Our fitting function is of the form, z∗/t∗α = ar∗β .
The value of α and β comes out to be −2 and 1, respectively, and the value of
a =0.0014 for t =0.39τc to 0.6τc and α = −2, β = 1 and a = 0.01 for t = 1.08τc to
1.16τc. The rescaling gives the collapsed profiles as exhibited in figures 21(b) and
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21(d ). In particular, we observe that the column height evolves as t−2. The height
of the surface is linear with respect to the radius indicating a cylindrical shape
of the profile. Such self-similarity is also observed for complete coalescence when
Oh2 is slightly larger than Oh1. Duchemin, Josserand & Clavin (2005) showed the
asymptotic behaviour of the spikes due to Rayleigh–Taylor instability evolving as
t2. Duchemin et al. (2002) have shown this similarity when a bubble burst at a free
surface. They derived a self-similar flow occurring when the conical cavity and the
cusp form followed by jet formation. Deng, Anilkumar & Wang (2007) also fitted
the high-speed thin jet following bubble pinch-off to a power-law model. The scaling
behaviour for self-similar dynamics in case of capillary-inertia regime gives the value
of α = 0.667. In case of thin high speed jet or cavity collapse inside a liquid body, the
value of α varies between 0.4 and 0.667. In these cases as the α is positive and less
then one, smaller value of α indicates higher singularity of the jet.

5. Discussion
Charles & Mason (1960a) have suggested that the partial coalescence was due to

a Rayleigh–Plateau instability. Blanchette & Bigioni (2006) have argued that it is
the convergence of the capillary waves on the drop apex which leads to secondary
drop pinch off. Recently Gilet et al. (2007a) have shown that the convergence of the
capillary waves cannot be the only mechanism responsible for partial coalescence.
They showed that when Oh1 is high, a mechanism is responsible for enhancing the
emptying of the droplet, resulting in a premature total coalescence. Inversely, when
Oh2 is high, another mechanism has to aid the horizontal collapse. However, when
Oh2 is too large, it has an opposite effect of weakening of the horizontal collapse.
From the six cases that have been mentioned in § 4.6 it is seen that the important
criterion for partial coalescence is the increasing horizontal momentum of the drop
relative to the vertical momentum. This can be accomplished either by changing the
viscosity or by changing the gravity within limits. Figure 22 depicts the dominant
movement in the above six cases. The dotted line indicates the initial liquid–liquid
interface. In the Case I (Oh1 ≈ Oh2), the liquid column is stretched upwards to a long
height and liquid 2 forces inwards to do the pinch-off. In the Case II (Oh1 < Oh2),
the height of the liquid column is lower due to the higher viscosity of liquid 2,
but the higher viscosity increases the horizontal collapse. So the drop pinches off
before collapsing. During the Case III (Oh1 � Oh2), at very high viscosity of liquid
2, the pinch-off is prevented and viscous liquid 2 pushes the entire drop to coalesce
completely. In the Case IV (Oh1 > Oh2), due to the high viscosity of liquid 1, the
capillary waves get damped out and the drop coalesces totally. It can be concluded
that for a low Oh1 value ( = 0.0058), when (Oh1/Oh2) ≈ 1, the pinch-off of secondary
drop occurs. As this ratio decreases to 0.1, the partial coalescence phenomenon still
occurs but as the ratio is further decreased to 0.01, there is no more pinch-off. In
contrast, for a low Oh2 value ( = 0.0058), as Oh1 is increased by a small amount,
Oh1 = 0.0412(Oh1/Oh2 ≈ 10), the drop completely coalesces. In the case of a high
viscosity of liquid 1, more mass of liquid 2 is displaced. Hence as Oh1 is increased,
an additional movement is induced which tends to accelerate the emptying of the
droplet. More viscous diffusion leads to vertical collapse of the liquid column. In
liquid 2, such an induced movement enhances the horizontal collapse. When Oh2 is
intermediate, the horizontal collapse is confined to regions lower than the equator of
the initial droplet, and this leads to partial coalescence. In contrast, when Oh2 is high,
the viscous diffusion entrains liquid 1 at higher latitudes and the vertical extension
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Figure 22. Dominant movements of liquid for Case I to Case VI.

of the horizontal collapse is greater, so the coalescence becomes total. The Case V
(Oh1 ≈ Oh2, intermediate Bo) illustrates the following. The pinch-off is similar to
that in the Case I, but as can be seen from the figure, the necking is below the initial
liquid–liquid interface due to more downward pull. Case VI (Oh1 ≈ Oh2, high Bo)
shows the total collapse of the drop due to the large downward vertical movement
of the drop for high gravitational pull. Thus it is seen that whether the drop will
completely coalesce or it will pinch off secondary droplet depends on the dominant
direction of flows acting on the drop.

6. Conclusions
This paper has mainly focused on the various outcomes of the partial coalescence

process. The critical behaviour of the liquids during the formation of daughter
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drops, both secondary drops, tertiary drops and the satellite drops has been revealed.
The most important results that are discussed in this study can be summarized as
follows:

When liquid drop impacts on a liquid–liquid interface, for very small drops
(corresponding Oh1 > 0.035, Oh2 = 0.0058, Bo =0.0958 and A= 0.136) and very
large drops (corresponding Bo > 7, Oh1 = 0.00533, Oh2 = 0.00387 and A= 0.136),
the phenomena of partial coalescence do not occur. Within this range, the process
can be divided into three regimes, depending on the different forces, namely viscous
force, surface tension force, inertia force and buoyancy force. Coalescence cascade is
observed in the inertio-capillary regime, which is self-similar in nature. The daughter
drop shape changes from prolate to oblate and then to spherical before it comes
in contact with the interface. Sometimes for large drops, two secondary drops
are formed. The first pinch-off is due to partial coalescence and the second is
due to Rayleigh-Plateau instability. Within the inertio-capillary regime, the partial
coalescence phenomena is independent of Atwood number.

We propose the mechanism by which transition from complete coalescence to partial
coalescence occurs. Gilet et al. (2007a) have explained the huge difference between
critical Ohnesorge numbers in both fluids by suspecting the presence of viscous
forces which effect partial coalescence. In the present work we have numerically
established that it is the competition between the horizontal and vertical momentum
of the drop which determines the transition between the two regimes of coalescence.
The capillary wave converge at the drop apex. Furthermore, when the horizontal
momentum exceeds the vertical momentum, a daughter drop pinches out. Different
forces for different flow parameters determine the outcome. The critical Ohnesorge
numbers (Oh1C, Oh2C) and the Bond number (BoC) show how different parameters
effect the partial coalescence process. The maximum height attained by the drop
(hdrop) and the maximum depth of the crater (hcrater ) does not vary much for a wide
range of Bond number and Ohnesorge numbers.

A transition regime between partial and complete coalescence with increasing
Ohnesorge number is defined. In this regime the neck oscillates twice before collapsing
into the liquid. For further increase in Ohnesorge number the oscillation again
reduces to one. Within this transition regime the column profiles in a certain
time range show power law scaling. Duchemin et al. (2002) have shown such self-
similarity of the profiles before jet formation when an air bubble bursts at the free
surface.

In the experimental work of Mohamed-Kassim & Longmire (2003, 2004), the
thin film below the drop ruptured asymmetrically. To capture this kind of rupture
numerically, three-dimensional studies are needed. Even the initial shape of the drop
is taken to be spherical and it approaches the interface at specified velocity. This kind
of initial conditions are seen in the numerical work of Morton et al. (2000). In order
to see the effect of drop shape more parametric study is needed. Further study is to
be done on the controlling parameters for partial coalescence. Some recent studies
by Gilet, Vandewalle & Dorbolo (2007b) have shown that the partial coalescence
can be prevented by using vertically vibrating bath. Other studies include the use
of surfactant to prevent the pinch-off. Also the process of partial coalescence when
two drops of unequal size comes in contact (Zhang et al. 2009) is to be investigated
numerically.

The authors are thankful to Professor Stephane Zaleski of UPMC, Paris for many
insightful discussions.
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